Enhancing the High Carbon Stock approach to better inform land prioritization in Asia

This project is available from the academic year 2024/25 onwards.

Theme: Biodiversity, Ecology & Conservation

Primary Supervisor:

Nathalie Pettorelli

Biodiversity and Macroecology Theme, IOZ

Nathalie Pettorelli's Profile Picture

Secondary Supervisor:

Mathias Disney

Geography, UCL

Mathias Disney's Profile Picture

Project Description:

The High Carbon Stock (HCS) approach is increasingly being promoted as a land-use planning tool of choice to demarcate conservation priority areas based on carbon value. The methodology seeks to conserve biodiverse and ecologically functional forest networks within agricultural concessions by directing conversion towards heavily degraded land of low carbon value. This is achieved by stratifying land into discrete classes according to vegetation density and structure, which are then adopted as proxies for above-ground carbon stocks and assumed to support varying levels of biodiversity. These strata are subsequently validated using field-derived above-ground carbon estimates, before land parcels are prioritised for conversion based on area and connectivity. Applications of such approaches primarily rely on the interpretation of optical, multispectral very high-resolution imagery, which is known to have limited capacity to detect variation in forest density and 3D structure. There is some evidence that HCS forests provide benefits for biodiversity, although existing validations focus on medium-sized non-volant mammals.

The project will (1) explore how the integration of radar and lidar data with multispectral high resolution data impact HCS classification; (2) assess the degree to which HCS categories derived from various satellite remote sensing approaches relate to biodiversity, focusing in particular on the distribution of functional diversity; (3) identify the factors associated with the conversion of high carbon stock area in the region, and use this information to develop an early warning system enabling the prioritisation of conservation efforts on the ground.

Policy Impact of Research:

This project aims to improve the processes by which HCS methodology is being implemented nationally, using Thailand and rubber tree cultivation as a case study. The project, developed and hosted by the Institute of Zoology, will be carried out in collaboration with UCL Geography and ZSL Conservation Programmes

Stay informed

Click here to subscribe to our RSS newsletter by email.

Find Us

University College London is the administrative lead.

North-West Wing, UCL, Gower Street, London, WC1E 6BT

Follow us on Twitter