

Additional Supervisor(s):
Kate Heppell (Queen Mary University of London)
Project Description:
The Arctic plays host to a diverse range of microorganisms, including bacteria, algae, and viruses. The activity (or inactivity) or these microorganisms impacts the carbon and nutrient cycling among glaciers and soils, as well as the fertilization and productivity of Polar fjords and oceans, and the albedo of ice surfaces and thus the rate of sea-level rise. Microorganisms in cryospheric habitats must overcome a multitude of environmental stresses, including the freezing of water, desiccation, nutrient deficiencies, and exposure to UV irradiation. To counteract the potentially damaging effects of their harsh environment, they have evolved a range of adaptations. During extended periods of extremely harsh conditions (such as winter), dormancy is essential to enable life to persist. The PhD project seeks to measure the level of activity and dormancy of microorganisms from of a number of Arctic settings including glaciers and soils. This project will develop novel methods to determine the activity of microbial communities from Arctic habitats in situ and in the lab, and will involve laboratory and computational methods, with a possibility of Arctic fieldwork. The student will collaborate within a multi-disciplinary team across Queen Mary University of London and the Natural History Museum. The project would suit a student with an interest in environmental microbiology and biogeochemistry, and Arctic climate change.
For further information about the project, please contact Dr James Bradley.
Policy Impact of Research:
This research has relevance for decision making on climate change mitigation and adaptation, and impact on conservation prioritisation.