This project is available from the academic year 2023/24 onwards.

Project Description:
The ocean is absorbing much of the heat and carbon dioxide emissions related to human caused climate change, but the long-term impacts on heat transport, carbon cycling and deep ocean circulation are poorly understood. Looking at past warm periods such as the Last Interglacial (125,000 years ago) and other “Super-Interglacials” where global temperatures are estimated to be 0.5 to 1.5°C warmer than today may provide insight into how the ocean accommodates heat and carbon. This project will use a suite of locations in the Atlantic and/or Pacific to characterize and map intermediate and deep water masses and ocean circulation.
This project necessitates a multi-proxy approach including stable isotopes (d13C, d18O), minor (Mg/Ca, temperature) and trace elements (B/Ca, [CO32-]) and trace isotopes (ENd). The project can be tailored to focus on regional (e.g. North Atlantic, Southern Ocean) or basin-wide reconstructions of ocean circulation depending on the research interests of the student.
Policy Impact of Research:
As the ocean is a large part of the climate system, being able to constrain the ocean’s long-term response to future climate change on a variety of time scales has significant economic and societal impacts.